Module

Control.Applicative

Package
prelude
Repository
purerl/purescript-prelude

#Applicative Source

class (Apply f) <= Applicative f  where

The Applicative type class extends the Apply type class with a pure function, which can be used to create values of type f a from values of type a.

Where Apply provides the ability to lift functions of two or more arguments to functions whose arguments are wrapped using f, and Functor provides the ability to lift functions of one argument, pure can be seen as the function which lifts functions of zero arguments. That is, Applicative functors support a lifting operation for any number of function arguments.

Instances must satisfy the following laws in addition to the Apply laws:

  • Identity: (pure identity) <*> v = v
  • Composition: pure (<<<) <*> f <*> g <*> h = f <*> (g <*> h)
  • Homomorphism: (pure f) <*> (pure x) = pure (f x)
  • Interchange: u <*> (pure y) = (pure (_ $ y)) <*> u

Members

  • pure :: forall a. a -> f a

Instances

#liftA1 Source

liftA1 :: forall b a f. Applicative f => (a -> b) -> f a -> f b

liftA1 provides a default implementation of (<$>) for any Applicative functor, without using (<$>) as provided by the Functor-Applicative superclass relationship.

liftA1 can therefore be used to write Functor instances as follows:

instance functorF :: Functor F where
  map = liftA1

#unless Source

unless :: forall m. Applicative m => Boolean -> m Unit -> m Unit

Perform an applicative action unless a condition is true.

#when Source

when :: forall m. Applicative m => Boolean -> m Unit -> m Unit

Perform an applicative action when a condition is true.

Re-exports from Control.Apply

#Apply Source

class (Functor f) <= Apply f  where

The Apply class provides the (<*>) which is used to apply a function to an argument under a type constructor.

Apply can be used to lift functions of two or more arguments to work on values wrapped with the type constructor f. It might also be understood in terms of the lift2 function:

lift2 :: forall f a b c. Apply f => (a -> b -> c) -> f a -> f b -> f c
lift2 f a b = f <$> a <*> b

(<*>) is recovered from lift2 as lift2 ($). That is, (<*>) lifts the function application operator ($) to arguments wrapped with the type constructor f.

Instances must satisfy the following law in addition to the Functor laws:

  • Associative composition: (<<<) <$> f <*> g <*> h = f <*> (g <*> h)

Formally, Apply represents a strong lax semi-monoidal endofunctor.

Members

  • apply :: forall b a. f (a -> b) -> f a -> f b

Instances

#(<*>) Source

Operator alias for Control.Apply.apply (left-associative / precedence 4)

#(<*) Source

Operator alias for Control.Apply.applyFirst (left-associative / precedence 4)

#(*>) Source

Operator alias for Control.Apply.applySecond (left-associative / precedence 4)

Re-exports from Data.Functor

#Functor Source

class Functor f  where

A Functor is a type constructor which supports a mapping operation map.

map can be used to turn functions a -> b into functions f a -> f b whose argument and return types use the type constructor f to represent some computational context.

Instances must satisfy the following laws:

  • Identity: map identity = identity
  • Composition: map (f <<< g) = map f <<< map g

Members

  • map :: forall b a. (a -> b) -> f a -> f b

Instances

#void Source

void :: forall a f. Functor f => f a -> f Unit

The void function is used to ignore the type wrapped by a Functor, replacing it with Unit and keeping only the type information provided by the type constructor itself.

void is often useful when using do notation to change the return type of a monadic computation:

main = forE 1 10 \n -> void do
  print n
  print (n * n)

#(<$>) Source

Operator alias for Data.Functor.map (left-associative / precedence 4)

#(<$) Source

Operator alias for Data.Functor.voidRight (left-associative / precedence 4)

#(<#>) Source

Operator alias for Data.Functor.mapFlipped (left-associative / precedence 1)

#($>) Source

Operator alias for Data.Functor.voidLeft (left-associative / precedence 4)