Data.Witherable
- Package
- filterable
- Repository
- purescript/purescript-filterable
#Witherable Source
class Witherable :: (Type -> Type) -> Constraint
class (Filterable t, Traversable t) <= Witherable t where
Witherable
represents data structures which can be partitioned with
effects in some Applicative
functor.
wilt
- partition a structure with effectswither
- filter a structure with effects
Laws:
- Naturality:
t <<< wither f ≡ wither (t <<< f)
- Identity:
wither (pure <<< Just) ≡ pure
- Composition:
Compose <<< map (wither f) <<< wither g ≡ wither (Compose <<< map (wither f) <<< g)
- Multipass partition:
wilt p ≡ map separate <<< traverse p
- Multipass filter:
wither p ≡ map compact <<< traverse p
Superclass equivalences:
partitionMap p = runIdentity <<< wilt (Identity <<< p)
filterMap p = runIdentity <<< wither (Identity <<< p)
traverse f ≡ wither (map Just <<< f)
Default implementations are provided by the following functions:
wiltDefault
witherDefault
partitionMapByWilt
filterMapByWither
traverseByWither
Members
wilt :: forall m a l r. Applicative m => (a -> m (Either l r)) -> t a -> m { left :: t l, right :: t r }
wither :: forall m a b. Applicative m => (a -> m (Maybe b)) -> t a -> m (t b)
Instances
Witherable Array
Witherable List
(Ord k) => Witherable (Map k)
Witherable Maybe
(Monoid m) => Witherable (Either m)
#partitionMapByWilt Source
partitionMapByWilt :: forall t a l r. Witherable t => (a -> Either l r) -> t a -> { left :: t l, right :: t r }
A default implementation of parititonMap
given a Witherable
.
#filterMapByWither Source
filterMapByWither :: forall t a b. Witherable t => (a -> Maybe b) -> t a -> t b
A default implementation of filterMap
given a Witherable
.
#traverseByWither Source
traverseByWither :: forall t m a b. Witherable t => Applicative m => (a -> m b) -> t a -> m (t b)
A default implementation of traverse
given a Witherable
.
#wilted Source
wilted :: forall t m l r. Witherable t => Applicative m => t (m (Either l r)) -> m { left :: t l, right :: t r }
Partition between Left
and Right
values - with effects in m
.
#withered Source
withered :: forall t m x. Witherable t => Applicative m => t (m (Maybe x)) -> m (t x)
Filter out all the Nothing
values - with effects in m
.
#witherDefault Source
witherDefault :: forall t m a b. Witherable t => Applicative m => (a -> m (Maybe b)) -> t a -> m (t b)
A default implementation of wither
using compact
.
#wiltDefault Source
wiltDefault :: forall t m a l r. Witherable t => Applicative m => (a -> m (Either l r)) -> t a -> m { left :: t l, right :: t r }
A default implementation of wilt
using separate
Re-exports from Data.Filterable
#Filterable Source
class Filterable :: (Type -> Type) -> Constraint
class (Compactable f, Functor f) <= Filterable f
Filterable
represents data structures which can be partitioned/filtered.
partitionMap
- partition a data structure based on an either predicate.partition
- partition a data structure based on boolean predicate.filterMap
- map over a data structure and filter based on a maybe.filter
- filter a data structure based on a boolean.
Laws:
Functor Relation:
filterMap identity ≡ compact
Functor Identity:
filterMap Just ≡ identity
Kleisli Composition:
filterMap (l <=< r) ≡ filterMap l <<< filterMap r
filter ≡ filterMap <<< maybeBool
filterMap p ≡ filter (isJust <<< p)
Functor Relation:
partitionMap identity ≡ separate
Functor Identity 1:
_.right <<< partitionMap Right ≡ identity
Functor Identity 2:
_.left <<< partitionMap Left ≡ identity
f <<< partition ≡ partitionMap <<< eitherBool
wheref = \{ no, yes } -> { left: no, right: yes }
f <<< partitionMap p ≡ partition (isRight <<< p)
wheref = \{ left, right } -> { no: left, yes: right}
Default implementations are provided by the following functions:
partitionDefault
partitionDefaultFilter
partitionDefaultFilterMap
partitionMapDefault
filterDefault
filterDefaultPartition
filterDefaultPartitionMap
filterMapDefault
Instances
Filterable Array
Filterable Maybe
(Monoid m) => Filterable (Either m)
Filterable List
(Ord k) => Filterable (Map k)